Scholarly Work - Physics
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3458
Browse
1 results
Search Results
Item DIISC-I: The Discovery of Kinematically Anomalous H i Clouds in M 100(American Astronomical Society, 2021-11) Gim, Hansung B.; Borthakur, Sanchayeeta; Momjian, Emmanuel; Padave, Mansi; Jansen, Rolf A.; Nelson, Dylan; Heckman, Timothy M.; Kennicutt Jr., Robert C.; Fox, Andrew J.; Pineda, Jorge L.; Thilker, David; Kauffmann, Guinevere; Tumlinson, JasonWe report the discovery of two kinematically anomalous atomic hydrogen (H i) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey in H i 21 cm at 3.3 km s−1 spectroscopic and 44″ × 30″ spatial resolution using the Karl G. Jansky Very Large Array. 15 15 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M 100. The velocity offsets of 40 km s−1 observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in Hα and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(H i) ≤1.7 × 1013 cm−2 (3σ). Since M 100 is in the Virgo cluster, the nonexistence of neutral/cool CGM is a likely pathway for turning it into a red galaxy.